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Overview

 Constituents
—Gas: modern ISM has 90% H, 10% He by number
—Dust: refractory metals
—Cosmic Rays: relativistic e, protons, heavy nuclei
—Magnetic Fields: interact with CR, ionized gas

e Mass

—Milky Way has 10% of baryons in gas
—Low surface brightness galaxies can have 90%



ISM: Phases

Gas 1n the ISM has a number of phases:

Cold Neutral Medium: T ~ 100 K, n~100-10% cm-3
Warm Neutral Medium: T~ 1000K, n~1 cm?
Warm lonized Medium: T ~ 10,000 K, n~ 0.1 cm™3
Hot Interstellar Medium: T~ 10° K, n ~ 0.01 cm™?

Unsurprisingly, only the hot ISM emits any X-rays, and
even these are easily absorbed since they are (mostly) soft.



ISM: Phases

Model surface density and temperature maps of the inner ISM

Log(Z,) Log(T,)
~1.0 0.5 20 35 5.0 1.0 2.0 3.0 4.0 5.0

0.5 1.0

Wada & Norman 1999



ISM: Phases

Vertical Distribution
* Cold molecular gas has 100 pc scale height
» HI has composite distribution (~150, 500 pc)

* Reynolds layer of diffuse 1onized gas (~1.5 kpc)
* Hot halo extending into local IGM (~few kpc)



ISM: Phases

TABLE 1

INTERSTELLAR GAS DENSITIES

Component n(0) (atoms cm ~3) V< (km sy T (K)® Z, (pe)
Ho o0 e, 0.6 5 70
ColdHI®® e 0.3 6 135
Warm Hi(clouds)*® ....................... 0.07 9 . 135
Warm H 1 (interclouds)®’ .................. 0.10 9(14.3)! 400
Warm H u (diffuse)™® ...................... 0.025 9(20.0) 8000 1500
Warm Huregions™® ....................... 0.015 9 8000 70
(Ht4+ H) P o 1.15 160*

2 The velocity dispersion corresponds to turbulent motion only.
b Assumed temperature.

° The density distribution is Gaussian of the form exp (—z%/2z}).
4 Bloeman et al. 1986.

¢ Lockman 1984, adapted by Bloeman 1987.

" The density distribution is exponential of the form exp (—| z|/z,).
® Revnolds 1989.

h Savage er al. 1977.

' Kulkarni and Fich 1985.

i Reynolds 1985.

¥ Pandey and Mahri 1987.

Boulares & Cox 1990



ISM: Phases

CO distribution 1in Galaxy
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ISM: Phases
Vertical scale height of Halo HI layer

Measurement of halo HI done by comparing Ly o absorption

against high-Z stars to 21 cm emission (Lockman, Hobbs, Shull
1986)

\/\V 21 cm emission \/\V R

Need to watch for stellar contamination, radio beam sidelobes,
varying spin temperatures.



ISM: Phases
Vertical scale height of Halo HI layer
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ISM: Phases
Vertical scale height of Main HI layer
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ISM: Phases
Warm 1onized gas in halo

e Diffuse warm ionized gas 0.1
extends to higher than 1 kpc, _
seen In Hou (Reynolds 1985) g

c“_.ﬂlm |

0.01 |-

thick disk

*“Reynolds layer”,

thin disk

e Warm Ionized Medium, or s 1+ 15 & 25
e Diffuse Ionized Gas

e Dispersion measures and distances of pulsars in
globular clusters show scale height of 1.5 kpc

(Reynolds 1989). Revision using all pulsars by Taylor &
Cordes (1993), Cordes & Lazio (2002 astro-ph)



ISM: Phases

ROSAT made an all-sky survey in soft X-rays (0.1-2.2 keV);
these results, after removing point sources, are from Snowden
et al. 1997:
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ISM: Phases
Interstellar Pressure

 Thermal pressures are very low:
P, ~10°kg = 1.4 x 1013 erg cm™.
(Perhaps reaches 3000ky 1in plane)
* Magnetic pressures with B=3-6uG reach
Py~0.4-14x 107?erg cm™.
* Cosmic rays also exert a pressure:
Prp~0.8-1.6 x 102 erg cm™.
e Turbulent motions of up to 20 km/s contribute:
Py

e Boulares & Cox (1990) show that total weight may
require as much as 5 x /0" erg cm> to support.

~10-1? erg cm.



ISM: Local

Interestingly, we do not appear to be in a “normal” region of
the Galaxy. Partial proof of this may be seen this evening:

There are frequently stars visible in the night sky

If we lived in or near a molecular cloud, all of much of the
night sky would be dark to visible light. In fact, we can even
see (from orbit) quite a few sources in the extreme ultraviolet
(EUV) when a single “normal ISM” cloud would completely
absorb them.

Clearly, nearby space is not filled with dense (n > 1 cm™) gas.
What is it filled with?



ISM: Local

Besides absorption studies of nearby (D ~ 100 pc) stars (used
to quantify how little gas there is in our neighborhood), we
can also see the material that fills our locale, in soft X-rays:

L 50K

L 20D

L

i L

S0




ISM: Local

Based on this evidence, it 1s believed that we live inside a
“Local (Hot) Bubble” with average radius 100 pc, which
happens to be right next to another bubble, Loop I. The

Local Bubble is filled with hot (T ~ 10° K), diffuse (n ~ 0.01
cm) gas, and radiates primarily below 0.25 ke V.

Diagram of LB from
Cox & Reynolds (1990)




ISM: Absorption

All the phases of the ISM can be studied using absorption
spectroscopy. Simply find a bright (ideally continuum) source, and
look for absorption features:
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ISM: Absorption

Of course, one must also worry about calibration:
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ISM: Absorption

However, good results are available:
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ISM: Absorption

Clear limits can be placed on CO absorption:

counts/0.02 A bin
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ISM: Dust Grains

The counterpart to absorption studies 1s normally emission
(e.g. radio 21 cm/Ha). However, there 1s very little ISM gas
with temperatures higher than 10° K, so neither Chandra nor
XMM/Newton 1s much use.

Surprisingly, however, X-rays can also probe IS dust grains.

When an X-ray interacts
with a dense cloud of
electrons (such as are
found 1n a dust grain),
the electrons may vibrate
coherently, scattering the
X-ray slightly.




ISM: Dust Grains

The dust scattering cross section 18

D iy exp () cmar”

%\ (E, a, ) ~ 1.1(

ﬁ&.wu 3gcam

where o & 62.4" ERy ap,
So what does this mean?

Of course, we don’t observe single dust grains; we must
integrate over a distribution of dust grains, and along the
light of sight to a bright source.



ISM: Dust Grains

So the observed surface brightness at position 0 from the
source 1s:
f(z) do ¢

-1

I.ca(8) = NuFx [dE S(E) [ dan(a) | )dz




ISM: Dust Grains




ISM: Dust Grains

In order to properly measure the halo, the spectrum must be
measured:
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ISM: Dust Grains

In addition, we need to know the PSF of the telescope, as
this must be subtracted to get the actual scattered halo:
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different energies. The only
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ISM: Dust Grains
So here are some results from the LMXB GX13+1, at 3

free parameter 1s Ny.

NMRN = 267 x 10% cm™2
N¥e = 2.06 x 1022 cm~2
NEMRN = 3.08 x 10%2 cm~2

3.70 keV¥

Radial Position (arcsec)

1000

Smith, Edgar, &
Shafer (2001)



ISM: Dust Grains

Integrating the total surface brightness (relative to the source
flux) gives a result proportional to E-2. The constant term can
be easily related to any dust model.
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ISM: Dust Grains

What does the future hold? With sufficient energy resolution
and effective area, it will be possible to diagnose dust
abundances directly:
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Conclusions

Studying the ISM in X-rays 1s a relatively new field.

* Detailed absorption studies can only be done with high-
resolution telescopes. However, since X-rays penetrate all the
way to the Galactic center, they open a new window on ISM
studies.

e It is possible (albeit very difficult) to study the IGM as well
with deep observations.

e Emission from the ISM 1n X-rays 1s dominated by very soft
X-rays, mostly local.

* The study of IS dust grains, especially the largest dust grains,
can be done 1n a unique way with X-rays.



